
Towards Efficient On-Board Deployment of
DNNs on Intelligent Autonomous Systems

Alexandros Kouris
Dept. of Electrical & Electronic Engineering

Imperial College London, UK
a.kouris16@imperial.ac.uk

Stylianos I. Venieris
Samsung AI Center, Cambridge

s.venieris@samsung.com

Christos-Savvas Bouganis
Dept. of Electrical & Electronic Engineering

Imperial College London, UK
christos-savvas.bouganis@imperial.ac.uk

Abstract—With their unprecedented performance in major
AI tasks, deep neural networks (DNNs) have emerged as a
primary building block in modern autonomous systems. Intel-
ligent systems such as drones, mobile robots and driverless cars
largely base their perception, planning and application-specific
tasks on DNN models. Nevertheless, due to the nature of these
applications, such systems require on-board local processing in
order to retain their autonomy and meet latency and throughput
constraints. In this respect, the large computational and memory
demands of DNN workloads pose a significant barrier on their
deployment on the resource- and power-constrained compute
platforms that are available on-board. This paper presents an
overview of recent methods and hardware architectures that
address the system-level challenges of modern DNN-enabled
autonomous systems at both the algorithmic and hardware
design level. Spanning from latency-driven approximate com-
puting techniques to high-throughput mixed-precision cascaded
classifiers, the presented set of works paves the way for the on-
board deployment of sophisticated DNN models on robots and
autonomous systems.

I. INTRODUCTION

Deep neural networks (DNNs) are emerging as the domi-
nant model for numerous machine vision tasks. Their widely
demonstrated state-of-the-art accuracy has led to their deploy-
ment as a core component in a broad range of real-world
applications. At the forefront of this emergence, intelligent
autonomous systems have successfully nudged in various ap-
plications of the industrial landscape, such as Amazon’s robot-
run warehouse and Samsung’s Retail Bot, and actively lead the
development of research for novel applications, such as Uber’s
driverless vehicle, Google X’s autonomous delivery drone and
Samsung’s healthcare robot (Samsung Bot Care). However,
being constantly challenged by tasks of increasing complexity,
there is a continuing need to extract even higher accuracy out
of new models. To push the accuracy performance of DNNs,
larger and more complex networks have been introduced that
offer higher learning capacity at the expense of increased
compute and memory requirements.

These excessive computational demands introduce chal-
lenges when building intelligent autonomous systems. Such
systems typically consist of remote/mobile agents (such as
robot platforms) with limited computational capabilities and
strict power and/or payload constraints. This challenge is am-
plified by firm low-latency requirements that are imposed for
mission-critical decision making, as in the case of autonomous
navigation (Fig. 1a), where the agent interacts with real-world

(a) (b)

Fig. 1. Deep learning-powered UAV applications: (a): Autonomous Naviga-
tion [2] (b): Vehicle Detection [3]

unstructured environments and needs to rapidly respond in
external events (e.g. to avoid collisions). Additionally, the
high rate of information perceived from the agent’s sensors
introduce high-throughput requirements in order to absorb this
data to the maximum possible extend (Fig. 1b), broadening
effectively the agent’s perceptual capabilities.

To remedy this situation, powerful embedded processors
have emerged, spanning from mobile CPUs to embedded
GPUs and full-custom neural accelerators. Nevertheless, the
inefficiencies of programmable architectures on one hand and
the fixed functionality and high cost of custom chips on the
other, set a limit to their suitability for on-board processing on
autonomous systems. In this respect, a promising alternative
platform that strikes a balance between the high performance
of specialised hardware and the flexibility of processors is
reconfigurable hardware in the form of FPGAs [1].

In this context, the challenge of on-board deployment of
deep learning models is effectively reduced to the problem
of establishing an efficient mapping of DNN inference on
embedded FPGA platforms that: a) reduces the response
time to meet the safety requirements for making mission-
critical decisions, b) enables the near-sensor processing of
high-resolution images obtained by the agent’s on-board high
frame-rate camera and c) complies with the low-power con-
straints of the agent.

Overall, the future intelligent autonomous systems are de-
pendent on innovations: a) at the algorithmic level, leading
to further advancements in the achieved task-level accuracy
of machine vision models, and b) in the establishment of
advanced development tools, with the ability to provide effi-
cient mappings of state-of-the-art models to FPGAs (or other
embedded processing platforms), considering different optimi-
sation objectives such as latency and throughput. As illustrated



Accuracy

Latency Throughput

Development Tools
Layer

Algorithmic Layer

Optimisation Objectives 
Layer

Efficient Mapping 
of Model to Processing Platform

M
od

el
-H

ar
dw

ar
e 

Co
-D

es
ig

n

Fig. 2. Intelligent autonomous system development stack.

in Fig. 2, these development tools can either establish a
(faithful or approximate) forward mapping of a given model
on a targeted processing platform, or ultimately subsist as part
of a closed-loop model-hardware co-design process that co-
optimises the system’s accuracy and performance by iteratively
adjusting both the model itself and its underlying hardware
implementation.

Towards this direction, in our recent work, we have tackled
a number of critical problems at all levels of the development
stack (Fig. 2) to enable the efficient deployment of DNNs
on intelligent autonomous systems via the use of FPGAs.
The rest of the paper presents a high-level view of our
work, broadly including: 1) novel DNN architecture design
for autonomous drones at the algorithmic level [2], as well
as compute-aware DNN design co-optimising accuracy and
performance on the targeted processing platform [3] (discussed
in Sec. II); 2) toolflows for the automated generation of
latency-optimised (faithful and approximate) DNN inference
accelerators for latency-critical tasks, including both single-
[4, 5] and multi-DNN [6] scenarios (discussed in Sec. III);
and 3) the exploitation of the resilience of CNNs to reduced-
precision arithmetic to boost the inference throughput [7, 8]
(discussed in Sec. IV).

II. DEEP LEARNING-POWERED DRONES

Over the past decade, the broad commercial availability of
inexpensive micro aerial vehicles (MAVs), such as camera-
equipped quadcopters, has promoted UAVs to an emerging
remote sensing platform. At the same time, the advancements
of deep learning models in machine vision empowered UAVs
with increased autonomy that extended their applicability
on real-world tasks, including infrastructure inspection, and
search and rescue operations.

Towards Autonomous UAV Navigation. A task of ma-
jor importance in UAV missions is autonomous navigation.
To achieve robust navigational autonomy, real-time obstacle
detection (and ultimately avoidance) is required to handle
unmapped or dynamic objects and structures in the agent’s
environment. Recent literature, residing in the algorithmic
layer of Fig.’s 2 stack, has introduced DNN models that
demonstrate state-of-the-art performance in UAV navigation in
unseen environments, with enhanced generalisation capabili-
ties [9]. In this direction, we have recently proposed a novel
two-stream CNN architecture [2] that predicts the distance-
to-collision towards multiple directions, by extracting spatio-

400

350

300

250

200

150

100

50

Regression 
CNN

Classification
CNN

A
ctu

al D
istan

ce-to
-C

o
llisio

n
 (cm

) 

C
la

ss
 1

C
la

ss
 2

A
ctu

al D
istan

ce-to
-C

o
llisio

n
 (cm

) 

Robot’s path Robot’s path

400

350

300

250

200

150

100

50

Fig. 3. The proposed Regression CNN [2] provides distance-to-collision
predictions of finer granularity compared to relevant classification-based
approaches from the literature. A representative example of how the motion
planner utilises this additional information to make more informed action
decisions on the task of autonomous navigation is depicted here.

temporal features from the UAV’s on-board forward-looking
camera video stream (Fig. 1a). These values are fed to a novel
local motion planner, that controls the UAV’s yaw and linear
velocity, to achieve collision-free navigation.

Our approach handles the task of autonomous navigation
as a multistage process, and can be used in a standalone
setting to navigate in unseen environments (exploration), or
in combination with a global motion planner standing in for
the collision avoidance system.

Compared to other state-of-the-art approaches that employ
a coarser classification task between navigable and non-
navigable space [10], the introduced regression CNN offers
more information-carrying predictions during perception, en-
abling that way the motion planner to make more insightful
decisions on the autonomous navigation task (Fig. 3).

However, the efficient deployment of such computation-
ally demanding models on mobile robot platforms poses
formidable challenges, especially in the case of UAVs that
are restricted by limited payload capabilities and a narrow
power envelope. Moreover, in many applications, low-latency
requirements (e.g. for mission-critical decisions) as well as
deployment in remote areas, predetermine the establishment
of a wireless link between the remote agent and a base server
station to be prohibitive (in latency terms) or even impossible.

To deal with these challenges, a lot of attention has been
given on the deployment of deep learning models in embedded
processing systems (near-sensor processing). One conventional
direction comprises optimising the deployment of existing
models using i) custom hardware accelerators and ii) approx-
imation techniques. Examples of such approaches, recently
developed by our group are summarised in Sec. III.

Hardware-Aware DNN Design. At the same time, domain-
specific model-system co-design forms an alternative direction
that is gaining increasing attention in the literature. Along
these lines, in our recent work [3], we conducted a Neural
Architecture Search (NAS) on the task of vehicle detection
from UAV imagery (Fig. 1b), exploring the trade-off between
performance and accuracy by tuning the CNN’s architecture
(in terms of number and size of filters per layer) and the
resolution of the input image. Employing this compute-aware
design methodology, the resulting model provides the highest
accuracy or best performance, among other architectures all
complying to the same resource budget by efficiently utilising
the computational resources of the target platform.



III. LATENCY-CRITICAL DECISION MAKING

To achieve high throughput, a common practice in resource-
constrained systems involves the offloading of computation to
powerful cloud-based servers. However, the tight response-
time requirements posed by autonomous machines dictate
placing latency at the forefront. Safety-critical decision-
making tasks such as speed and steering angle control require
a very short loop between perceiving the environment (e.g.
scene recognition, object detection) and acting (e.g. steering
angle adjustment). To this end, performing inference locally is
an emerging alternative approach that is capable of alleviating
the time and battery overhead of cloud computing. By mapping
all computations on-device, the latency and power overhead
of exchanging data with the cloud together with the strict
requirements of constant Internet connectivity are removed
with a substantially reduced end-to-end latency.

Currently, there is a wide availability of commodity hard-
ware platforms with powerful compute capabilities that lie
within the power and form-factor budget of autonomous sys-
tems. The candidate processing systems span from the 10s of
watts of the latest embedded GPUs (e.g. NVIDIA Jetson TX1,
TX2 and Xavier) and the 5-watt profile of commodity mobile
processors (e.g. Qualcomm Snapdragon 845/855 and Samsung
Exynos 9810 SoCs) down to the sub-watt performance of
neural accelerators (e.g. the Intel Neural Compute Stick (NCS)
2 with a TDP of around 1 W).

Despite their advantages, each platform exhibits a number
of limitations that challenge their on-board adoption as the
main inference engine. On the one side of the spectrum,
programmable architectures, such as the mobile CPUs and
GPUs, offer flexibility in terms of functionality and often are
accompanied by a mature development toolchain. Nonethe-
less, the achieved programmability comes at the expense of
inefficiencies [11] and often suffers from substantial latency
variability [12] that does not meet the latency guarantees of
mission-critical tasks such as obstacle avoidance. Furthermore,
throughput-driven platforms, such as embedded GPUs, typi-
cally require batch processing to reach their peak performance,
with a substantial performance drop when batch size of 1 is
used as is typical in latency-critical tasks. On the other end,
although ASIC-based neural accelerators minimise inefficien-
cies, they come with the penalty of a fixed functionality after
fabrication, which can soon make them outdated due to the
rapid algorithmic advances of deep learning.

In this context, we target FPGAs to exploit both their
customisation and reconfiguration capabilities, aiming for a
balance between high performance and flexibility, and focused
on the latency-driven mapping of CNN and LSTM inference
on FPGA-based platforms. With reference to Fig. 2, Sec.
III-A does not modify the algorithmic layer and concentrates
on automated CNN-to-FPGA development tools and latency
optimisation. Sec. III-B presents a model-hardware co-design
method operating across all layers of the stack for the latency-
optimised mapping of LSTM inference on FPGAs.

A. Latency-Optimised CNN Inference on FPGAs

To enable the hardware acceleration of latency-critical
tasks, a latency-driven methodology of mapping CNNs to
FPGAs was proposed in [4]. The CNN-to-FPGA methodology
comprises a customisable hardware architecture, explicitly
optimised for low-latency CNN inference, together with an
automated flow for customising it based on the CNN workload
and the resources of the target FPGA. Three main latency-
first strategies drove the architectural design: i) fine-grained
customisability, ii) latency-centric design space exploration
and iii) batchless execution.

At the core of the architecture lies a pipeline of coarse
building blocks, supporting typical CNN operations e.g. con-
volutional, pooling and ReLU blocks. The pipeline operates in
a streaming manner with each block executing whenever data
become available at its input. The architecture is compile-time
configurable with respect to the number and type of blocks,
the parallelism within each block and the connectivity among
them. To generate an instance of the accelerator, the target
CNN is first partitioned into subgraphs that will be executed
by the accelerator in a time-sharing manner. Based on the CNN
partitioning, the proposed flow derives a single, flexible hard-
ware design that i) is capable of executing the layer patterns
that are present in any of the subgraphs and ii) is run-time
flexible with respect to its datapath so that no latency-costly
bitstream-level FPGA reconfiguration is required. Flexibility
with respect to datapath is introduced by means of run-time
configurable interconnections among the instantiatied building
blocks. This flexibility allows the architecture to process the
workloads of different subgraphs by forming the appropriate
datapath based on the current subgraph’s index, without the
need for the latency-costly reconfiguration of the FPGA fabric.

To tune the parameters of the architecture, the design space
exploration is treated as an optimisation problem. In this
respect, a latency-centric optimiser was developed aiming to
determine the configuration of the architecture that minimises
latency given a target CNN-FPGA pair. The optimiser searches
over different partitionings of the CNN, topologies of the
coarse pipeline and resource allocation among building blocks,
and by employing a latency-driven objective function, guides
the exploration towards latency-optimised designs. Following
this approach, we demonstrated that the generated latency-
optimised accelerators yield more than 5× latency gains over
throughput-optimised designs for computationally expensive
networks such as VGG, ResNet and DenseNet. Furthermore,
compared to highly optimised implementations on NVIDIA’s
embedded TX1 GPU, the generated designs achieve an average
latency improvement of more than 3× under a 5-watt power
budget and 30% higher power efficiency in GOp/s/W when
both platforms operate at their peak TDP [13].

B. Approximate LSTMs for Latency-Constrained Inference

Autonomous systems, such as self-driving cars, tend to
be inherently complex, comprising of numerous streamlined
sub-systems such as data pre-processing, localisation and
mapping, navigation, obstacle avoidance, emergency reaction



and control [14]. Deep learning models are making their way
in many of these sub-systems demonstrating state-of-the-art
accuracy in a wide span of machine vision applications [15].
However, this advancement of machine learning algorithms
comes at the cost of increased computational and memory
demands that cannot be accommodated at the edge, within the
resource-constrained environment of an autonomous agent.

Additionally, hard latency constraints are imposed on such
mission-critical tasks to achieve real-time performance that
would provide adequate reaction time and guarantee functional
safety. In this respect, approximation techniques able to extract
the best-possible estimate of the output of such systems
complying to a pre-specified time budget can be employed to
enable the autonomous agent to optimise its overall operation
within a low-latency envelope.

At the moment, Long Short-Term Memory networks
(LSTMs) [16] form the dominant recurrent neural network
(RNN) model, capable of recognising temporal dependencies
in sequential data such as video streams. This property has
made LSTMs a prominent model for processing sensor data
streams in various applications related to autonomous systems.
In the field of autonomous driving for example, LSTMs
are employed for extracting temporal features from the on-
board camera’s video streams that are exploited to develop a
consistent driving policy [17].

In [5], we have introduced a novel approximate computing
scheme for LSTMs that enables their efficient deployment in
time-constrained environments by relaxing their demanding
memory (and compute) requirements, exploiting their inherent
redundancy. The proposed scheme enables us to restructure
the computations lying at the core of an LSTM’s workload
(consisting of multiple matrix-vector multiplications) in order
to perform the most information-rich computations first, by
means of an SVD-based low-rank approximation of each
weight matrix. This allows us to exploit the trade-off between
latency and accuracy to yield the best-possible estimate of
the final output at any time instant. Alongside, based on
an importance criterion of each trained weight, a structured
pruning of the model’s weight matrices is employed to further
tunably reduce the computational demands and memory foot-
print during inference, following the compute-aware model-
hardware co-design approach of Fig. 2.

At the hardware level, the proposed approximation comput-
ing scheme is coupled with a parametrised custom architecture
that enables the optimised hardware mapping of a given
LSTM model on a target FPGA, tailored to the available
time-to-decision budget. Having developed an analytical per-
formance model that captures the attainable performance of
different architectural configurations, we conduct design space
exploration to co-optimise the LSTM approximation and the
hardware design of the underlying architecture. This approach
automatically configures varying levels of parallelism corre-
sponding to different architectural dimensions of the hardware
implementation, as well as approximation scheme parameters
including the number of iterative approximation steps and the
desired level of sparsity introduced by pruning.

10 -4 10 -3 10 -2 10 -1 10 0

Computation Time (ms)

0

0.5

1

1.5

2

2.5

3

3.5

4

kl
-d

iv
er

ge
nc

e

10 -4

svd-4160NZ
svd-1040NZ
svd-260NZ
svd-65NZ
svd-8NZ
svd-4NZ
baseline

Fig. 4. Quality-of-result (lower is better on the y-axis) over computation
time illustration for various instances of our approximate LSTM inference
methodology, applied on the autonomous driving LSTM model of [19], a
faithful implementation of which also acts as a baseline (black line). The
proposed approach demonstrates notably higher quality approximations of the
model’s output, across the computation time axis.

Autonomous Driving through Approximate LSTMs. In
[18], the proposed methodology has been applied on the
driving model of [19] that directly predicts the feasibility
of discrete actions from a visual sensor’s data steam (move
forward, stop, turn left, turn right). As a metric of accuracy we
examine the KL-Divergence between the predicted probability
distribution after each approximation step and the final output
of the base model. As illustrated in Fig. 4, all the different
configurations of the proposed methodology converge to a pre-
diction similar to the desired, much faster than the examined
baseline comprising of a faithful mapping of the LSTM into
an optimised tiled matrix-vector multiplication architecture.
Moreover, the proposed methodology offers a better trade-
off between performance and accuracy, since for any given
time budget it provides a prediction closer to the base model’s
final output, compared to the partial solution generated by the
baseline in the same latency envelope.

IV. HIGH-THROUGHPUT VISUAL PERCEPTION

Although latency is the dominant optimisation objective on
many real-time autonomous system applications, some percep-
tion tasks also rely on the capability of the system to cope with
high rates of input data. In visual Simultaneous Localisation
and Mapping (SLAM), for example, effective tracking of a
mobile agent’s position and orientation (localisation) requires
processing input images in an exceedingly high frame-rate to
avoid skipping frames that would potentially result to tracking
failure under agile motion of the robot platform [20, 21].
CNNs, and other deep learning models, have recently started
to emerge in visual SLAM applications in order to augment
the progressively constructed map, for example, with semantic
information [22].

Exploiting the inherent redundancy of deep learning models
to achieve high performance by employing low-precision
arithmetic has been widely studied in the literature [23]. Most



HPU
CEU

Memory

PA
SS

FAIL

LPU HPU
k

1-k

HPULPU CEU

Memory

PASS

FAIL

(a) (b)

Fig. 5. CascadeCNN’s architecture consisting of a low- and a high-precision
unit, separated by a confidence evaluator acting on LPU’s predictions:
(a) Optimised for high-throughput, employing large batches and full device
reconfiguration; (b) Throughput-latency co-optimised via resource sharing.

existing works explore the performance-accuracy trade-off by
adopting the minimum wordlength that satisfies a pre-specified
–typically inconsequential– error tolerance. Conversely to this
approach, we have recently introduced CascadeCNN [7, 8],
a novel automated toolflow that pushes the performance of
precision-quantised CNNs by generating a high-throughput
cascade of CNN classifiers.

An overview of CascadeCNN’s architecture is depicted in
Fig. 5a. The first stage of this cascade, called the Low-
precision Unit (LPU), employs excessively low-precision
arithmetic units providing rapid classification results at the
expense of accuracy degradation. However, exploiting the fact
that not all inputs require the same amount of processing,
a significant portion of input samples yields a confident
classification prediction at this stage. These are identified by
a Confidence Evaluation Unit (CEU) based on how “spiky”
the probability distribution of the LPU’s prediction is. The
remainder of the input samples that do not satisfy the CEU’s
high-confidence criterion are forwarded for re-processing on a
High-precision Unit (HPU), to restore the overall application-
level accuracy back to the desired level.

The arithmetic precision adopted by the LPU and HPU is
tuned based on statistics extracted from a small set of vali-
dation samples. In the current setting, the LPU is derived by
direct quantisation of the reference model, avoiding the need
of parameter fine-tuning. However, the proposed approach
is orthogonal to quantisation with retraining, allowing any
precision-quantised model to act as CascadeCNN’s LPU.

Especially in the case of precision-optimised models,
FPGAs form a promising platform for efficient deployment
due to their inherent customisability that provides substantial
flexibility on the hardware implementation of the system.
To accommodate both the low- and the high-precision units
of CascadeCNN, a hardware architecture was designed that
scales its performance (Fig. 6) with respect to the selected
wordlength, by fully exploiting the available FPGA resources.

Performance modelling is conducted to enable design space
exploration across various parallel dimensions of the pro-
posed architecture, considering the CNN model, target FPGA
device, user-specified error tolerance and application-based
optimisation objectives (i.e. latency-throughput requirements).
In the case of throughput-driven optimisation, each stage of
the cascade (LPU and HPU) is independently mapped to an
optimised architecture spread across the target FPGA, while

0
250
500
750
1000
1250
1500
1750
2000
2250
2500

0
10
20
30
40
50
60
70
80
90

100

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Wordlength (bits)

VGG-16
AlexNet
CompRoof

To
p

-5
 Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

P
er

fo
rm

an
ce

 (
G

O
p

/s
)

Fig. 6. Trade-off between precision, accuracy and performance of our novel
CNN architecture (employed by both computational units of CascadeCNN),
implemented on ZC706 FPGA. On both CNN models, CascadeCNN selects
a 4-bit representation for the LPU and [6,8]-bit representation for the HPU
depending on the user-specified error tolerance.

full device reconfiguration is employed to alternate the two
stages sequentially (Fig. 5a). To effectively amortise the cost of
this occasional reconfiguration, batch processing is employed.

Nevertheless, with the latency being severely hurt by recon-
figuration, when latency constraints are also imposed by the
application, the design space exploration considers a resource-
sharing approach between the two cascade stages. In this case,
the resulting implementation adopts two concurrent instances
of the proposed architecture –each supporting a different
precision– on the same device (Fig. 5b).

CascadeCNN has been evaluated on the task of image
classification on ImageNet’s 2012 validation set. The results
showcase that a throughput boost of up to 55% for VGG16
and 48% for AlexNet is achieved by CascadeCNN’s designs,
compared to optimised single-stage baselines under the same
resource budget and error tolerance.

V. ENABLING MULTI-CNN SYSTEMS

As deep learning algorithms become more mature, several
multi-CNN robotic systems are currently under development.
Systems such as human-sensing robots and inspection drones
typically employ either pipelines of neural networks, where
one network feeds the next (e.g. a face detector followed by an
emotion recogniser), or distinct DNNs working on independent
tasks (e.g. infrastructure inspection and obstacle avoidance). In
such settings, DNNs constitute mere components of the overall
system and work synergistically to perform the tasks at hand.

Despite the algorithmic advances, from a pragmatic point
of view, deploying multiple models on a given compute
platform poses a number of challenges. At the workload
level, with each DNN targeting a different task, the compute
and memory load as well as the latency constraints vary
accordingly. Instead of employing a fixed and model-agnostic
architecture, this property requires an accelerator design that
captures and reflects both the workload characteristics and
the performance requirements of each model. Moreover, the
resource-constrained setups of autonomous systems require the
multiple CNNs to compete for the same pool of resources and
hence resource allocation becomes a decisive factor.

To this end, we recently presented f-CNNx [6], a toolflow
that addresses the challenge of mapping multiple CNNs on



C-PE

Weights Mem.

C-PE

Weights Mem.

C-PE

Weights Mem.

PE Folding

Weights Mem.

Dot-product Unit 
Folding

Conv
Layer

Pool 
Layer

Conv
Layer

Pool 
Layer

Conv
Layer

Conv
Layer

Pool 
Layer

CNN Engine1

CNN Engine 2

Conv
Layer

Pool 
Layer

Conv
Layer

Pool 
Layer

CNN Engine N

…

Multi-CNN Hardware 
Scheduler

FPGA

Off-chip Memory

…

Fig. 7. Parallel architecture for multiple CNNs.

a single FPGA platform while satisfying the latency require-
ments for each network. f-CNNx introduces a novel multi-
CNN hardware architecture (Fig. 7) consisting of i) a number
of heterogeneous CNN engines and ii) a multi-CNN hardware
scheduler (MCNN-HS). Instead of instantiating a fixed accel-
erator and relying on scheduling for the sequential execution
of the target set of CNNs, the strategy of our framework is
to generate one dedicated engine per CNN, customised to its
workload and performance needs. This approach enables the
concurrent execution of all networks in an efficient manner,
with the MCNN-HS module allocating the external memory
bandwidth to the CNN engines at run time, following a static
schedule. To tune the parameters of the architecture, the design
space exploration task is cast to a multiobjective optimisation
problem aiming to tailor the allocation of both the on-chip
resources and external memory bandwidth to the performance
needs of the target set of CNNs.

The combination of a highly parametrised architecture that
allows fine-grained tuning together with the optimisation of
both the architecture and the schedule of the external memory
transfers enables f-CNNx to overcome the limitations of com-
peting parallel architectures, and demonstrates performance
gains of up to 6.8× in performance-per-watt over highly
optimised implementations on the NVIDIA Jetson TX1 GPU.

VI. CONCLUSION

The presented set of works focuses on enabling the em-
bedded deployment of advanced DNNs on-board modern
intelligent autonomous systems to enhance their capabilities.
From an algorithmic perspective, novel DNN architectures
play a key role in improving critical robotic tasks by reaching
unprecedented accuracy levels. At the same time, the compute-
aware design of DNNs can lead to the generation of hardware-
friendly models that are co-optimised for both the task-level
accuracy and the compute capabilities of the available process-
ing platform. With latency being at the centre of requirements
for mobile robots, custom hardware accelerator designs that
are explicitly optimised for low-latency inference and oper-
ation under computation-time constraints can be an enabling
technology for CNN- and LSTM-based decision-making sys-
tems. To provide the computing support for processing high-
bandwidth visual sensor data, CascadeCNN exploits mixed-
precision arithmetic to boost the throughput of on-board CNN
inference. Finally, the f-CNNx framework paves the way in
executing multiple CNNs under stringent latency constraints
via FPGA acceleration.

VII. ACKNOWLEDGEMENTS

The support of the EPSRC Centre for Doctoral Training in High Per-
formance Embedded and Distributed Systems (HiPEDS, Grant Reference
EP/L016796/1) is gratefully acknowledged. This work is also supported by
EPSRC grant 1507723.

REFERENCES
[1] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for Mapping

Convolutional Neural Networks on FPGAs: A Survey and Future Direc-
tions,” ACM Comput. Surv., vol. 51, no. 3, pp. 56:1–56:39, Jun. 2018.

[2] A. Kouris and C. Bouganis, “Learning to Fly by MySelf: A Self-
Supervised CNN-Based Approach for Autonomous Navigation,” in 2018
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Oct 2018.

[3] C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris, and C. S.
Bouganis, “DroNet: Efficient Convolutional Neural Network Detector
for Real-Time UAV Applications,” in 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), March 2018, pp. 967–972.

[4] S. I. Venieris and C. S. Bouganis, “Latency-Driven Design for FPGA-
based Convolutional Neural Networks,” in Int. Conf. on Field Pro-
grammable Logic and Applications (FPL), Sept 2017.

[5] M. Rizakis, S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Approximate
FPGA-based LSTMs under Computation Time Constraints,” in Applied
Reconfigurable Computing - 14th International Symposium, ARC 2018,
Santorini, Greece, May 2 - 4, 2018, Proceedings, 2018, pp. 3–15.

[6] S. I. Venieris and C. S. Bouganis, “f-CNNx: A Toolflow for Mapping
Multiple Convolutional Neural Networks on FPGAs,” in Int. Conf. on
Field Programmable Logic and Applications (FPL), 2018.

[7] A. Kouris, S. I. Venieris, and C.-S. Bouganis, “CascadeCNN: Pushing
the Performance Limits of Quantisation in Convolutional Neural Net-
works,” in 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), 2018, pp. 155–1557.

[8] A. Kouris, S. Venieris, and C.-S. Bouganis, “CascadeCNN: Pushing the
performance limits of quantisation,” in SysML, 2018.

[9] A. Loquercio, A. I. Maqueda, C. R. del Blanco, and D. Scaramuzza,
“DroNet: Learning to Fly by Driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

[10] D. Gandhi, L. Pinto, and A. Gupta, “Learning to Fly by Crashing,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Sept 2017, pp. 3948–3955.

[11] R. Hameed et al., “Understanding Sources of Inefficiency in General-
purpose Chips,” in Proc. of the 37th Annual Int. Symposium on Computer
Architecture. ACM, 2010.

[12] C. Wu et al., “Machine Learning at Facebook: Understanding Inference
at the Edge,” in HPCA, 2019.

[13] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: Mapping Regular and
Irregular Convolutional Neural Networks on FPGAs,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2018.

[14] S. Thrun, “Toward robotic cars,” Communications of the ACM, vol. 53,
no. 4, pp. 99–106, 2010.

[15] M. Bojarski et al., “End to end learning for self-driving cars,” arXiv
preprint arXiv:1604.07316, 2016.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] L. Chi and Y. Mu, “Learning End-to-End Autonomous Steering Model
from Spatial and Temporal Visual Cues,” in Workshop on Visual Analysis
in Smart and Connected Communities (VSCC). ACM, 2017.

[18] A. Kouris, S. I. Venieris, M. Rizakis, and C.-S. Bouganis, “Approximate
LSTMs for Time-Constrained Inference: Enabling Fast Reaction in Self-
Driving Cars,” arXiv, 2019.

[19] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-End Learning of Driving
Models from Large-Scale Video Datasets,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[20] K. Boikos and C.-S. Bouganis, “A Scalable FPGA-Based Architecture
for Depth Estimation in SLAM,” in Applied Reconfigurable Computing.
Cham: Springer International Publishing, 2019, pp. 181–196.

[21] A. Handa, R. A. Newcombe, A. Angeli, and A. J. Davison, “Real-
time camera tracking: When is high frame-rate best?” in European
Conference on Computer Vision (ECCV). Springer, 2012.

[22] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Seman-
ticFusion: Dense 3D Semantic Mapping with Convolutional Neural
Networks,” in Int. Conf. on Robotics and Automation (ICRA), 2017.

[23] J. Cheng, J. Wu, C. Leng, Y. Wang, and Q. Hu, “Quantized CNN: A Uni-
fied Approach to Accelerate and Compress Convolutional Networks,”
IEEE Trans. on Neural Networks and Learning Systems, no. 99, 2017.


